Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ Декан факультета Факультет кадастра и строительства

троительства __ Сысоев О.Е.

«<u>Q1</u>» 05 2021 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Строительная механика»

Направление подготовки	08.03.01 Строительство
	Производственно-технологическое обеспечение строительства
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
1, 2	1, 2, 3	7 - ,

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачёт (2), Экзамен	Кафедра «Строительство и архитектура»

Разработчик рабочей программы:

Кандидат физико-математических наук

11951

Щербатюк Г.А

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Строительство и архитектура»

Сысоев О.Е.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Строительная механика» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации №481 от 31.05.2017, и основной профессиональной образовательной программы подготовки «Производственно-технологическое обеспечение строительства» по направлению подготовки «08.03.01 Строительство».

Практическая подготовка реализуется на основе:

Профессиональный стандарт 16.032 «Специалист в области производственнотехнического и технологического обеспечения строительного производства».

Обобщенная трудовая функция: В Разработка и ведение организационно-технологической и исполнительной документации строительной организации.

НЗ-8 Основные принципы строительного проектирования и состав проектной документации.

Задачи дисци-плины	- Освоение методов решения научно-технических задач в области механики и основных алгоритмов математического моделирования механических явлений; - Овладение навыками практического использования методов, предназначенных для математического моделирования движения и равновесия материальных тел и механических систем; - Изучение теоретических положений на основании которых разработаны основные принципы и практические методы расчёта инженерных конструкций на прочность и жёсткость при различных внешних статических воздействиях Формирование устойчивых навыков по применению фундаментальных положений механики при изучении дисциплин профессионального цикла и научном анализе ситуаций, с которыми выпускнику приходится сталкиваться в профессиональной деятельности.
Основные разделы / темы дисциплины	Теоретическая механика Сопротивление материалов Строительная механика

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Строительная механика» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компе- Индикаторы достиже- П тенции ния	Планируемые результаты обуче- ния по дисциплине			
Общепрофессиональные				
ОПК-1 Способен решать задачи профессиональной деятельности на основе использования теоретических и практических наук, а также математического аппарата ОПК-1.1 Знает фундаментальные законы природы, основные физические и математические законы К к урганической на заментальные законы К к урганической на законы К к урганической на законы К к урганической на законы К к к к законы Природы, основные физическом на законы Природы, основные физическом на законы Природы (к к к законы) К к к к законы К к к к к	нать: основные понятия и аксиомы еханики, случаи приведения ействующей на тело системы сил			

	шарнирно-консольной балки и шарнирно-стержневой системы.
ОПК-1.2 Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера	Уметь: — Составлять уравнения равновесия для тела, находящегося под действием произвольной системы сил; — вычислять скорости и ускорения точек тел и самих тел, совершающих поступательное, вращательное и плоское движения; - решать прямую и обратную задачи динамики точки вычислять кинетическую энергию много массовой системы, работу сил, приложенных к твердому телу при указанных движениях - определять внутренние силовые факторы при различных видах деформирования элементов конструкций и выполнять построение их эпюр; производить расчеты на прочность, жесткость и устойчивость типовых элементов конструкций и деталей машин. - выбирать подходящий метод; формулировать гипотезы и ограничения, определяющие применимость методов строительной механики; ориентироваться в выборе расчетной конструкции, обладающей геометрической и мгновенной неизменяемости.
ОПК-1.3 Владеет навыками применения знаний физики и математики при решении практических задач	Владеть: - Навыками решения задач по кинематике точки и твердого тела — навыками исследования равновесия твердого тела (системы тел) под действием плоской и пространственной систем сил; - владеть навыками составления и решения дифференциальных уравнений движения точки, основами методов механики - практическими навыками выполнения расчетов типовых элементов конструкций и деталей машин по критериям прочности,

	жесткости и устойчивости; навыками обоснованного выбора материалов и поперечных сечений элементов конструкций и деталей машин по критериям прочности, жесткости и устойчивости, пользуясь справочной литературой и стандартами. - навыками определения и анализа расчетной схемы и определения ее степени статической и кинематической определимости; методами записи определяющих уравнений для конструкций различных типов
--	---

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Строительная механика» изучается на 1, 2 курсе, 1, 2, 3 семестре. Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к основной части.

Знания, умения и навыки, сформированные при изучении дисциплины «Строительная механика», будут востребованы при изучении последующих дисциплин: «Антисейсмическое строительство», «Учебная практика (ознакомительная практика)».

Дисциплина «Строительная механика» частично реализуется в форме практической подготовки.

Дисциплина «Строительная механика» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, уважения к правам и свободам человека, знания правовых основ и законов, воспитание чувства ответственности или умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 7 з.е., 252 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	252
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	141
В том числе:	

занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками), в том числе в форме практической подготовки:	63
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), в том числе в форме практической подготовки:	78/36*
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	76
Промежуточная аттестация обучающихся – Зачёт (2), Экзамен	35

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

		чебной работы, вы боту обучающихся сах)	и трудоемкость (
Наименование разделов, тем и содержание материала	Контак	Контактная работа преподавателя с обу- чающимися		
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	CPC
Раздел 1 Теоретическая механика				
Введение. Основные модели и определения Основные понятия статики и аксиомы статики. Сила, система сил. Момент силы. Равновесие абсолютно твердого тела. Аксиомы статики их следствия. Несвободное твердое тело. Связи. Реакции связей. Основные задачи статики.	2			2
Система сходящихся сил. Приведение системы сходящихся сил к равнодействующей. Условие равновесия сходящихся сил. Теорема о равновесии трех непараллельных сил. Аналитический способ определения равнодействующей системы сходящихся сил.	2	2		

Теория пар сил Сложение двух параллельных сил. Момент силы относительно произвольного центра и относительно оси. Момент пары сил. Теоремы о парах. Приведение системы пар к простейшему виду. Равновесие системы пар	2		
Основные теоремы статики и условия равновесия пространственной системы сил Лемма о параллельном переносе сил. Основная теорема статики. Аналитическое определение главного вектора и главного момента пространственной системы сил. Приведение системы сил к простейшему виду. Условия равновесия пространственной системы сил.	2		2
Произвольная система сил Приведение системы сил к простейшему виду. Условия равновесия пространственной системы сил. Задачи на определение реакций связей. Равновесие системы тел. Составные конструкции. Приложение методов статики к определению усилий в стержнях фермы	2	6/2*	2
Равновесие тела при наличии трения Сцепление и трение тел. Равновесие тела при наличии трения скольжения. Равновесие тела при наличии трения качения. Центр параллельных сил и центр тяжести Центр параллельных сил. Центр тяжести. Методы нахождения центра тяжести. Центры тяжести простейших фигур.	2	2	
Кинематика точки. Кинематические способы задания движения точки (естественный, координатный, векторный). Скорость точки. Ускорение точки. Касательное и нормальное ускорения точки. Классификация движений точки по ускорениям ее движения.	2	4/2*	
Простейшие движения твердого тела	2	2*	

Поступательное движение твердого тела. Вращательное движение твердого тела. Уравнение вращательного движения. Угловая скорость и угловое ускорение тела. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси. Передаточные механизмы.			
Плоское движение твердого тела Свойства плоского движения твердого тела. Уравнение движения плоской фигуры. Теорема о скоростях точек плоской фигуры и ее следствия. План скоростей. Мгновенный центр скоростей. Теорема об ускорениях точек плоской фигуры и ее следствия. Мгновенный центр ускорений. Определение ускорений точек и угловых ускорений звеньев плоского механизма.	2	4	
Сложное движение точки. Относительное, переносное и абсолютное движения точки. Теорема о сложении скоростей. Теорема о сложении ускорений (теорема Кориолиса).	2	2	
Динамика свободной материальной точки Предмет динамики. Законы динамики. Задачи динамики. Начальные условия. Основные виды сил. Дифференциальные уравнения движения свободной материальной точки в декартовых координатах. Естественные уравнения движения материальной точки. Две основные задачи динамики точки. Решение первой задачи. Решение основной задач динамики, в случаях, когда сила постоянна или зависит от времени. Решения основной задачи динамики в случаях, когда сила зависит от расстояния или от скорости. Решения основной задачи динамики при криволинейном движении точки	2	2	
Колебательное движение материальной точки Виды колебательных движений материальной точки. Свободные колебания материальной точки. Уравнение, ам-	2	2	

точки. Вынужденные колебания материальной точки. Резонанс. Влияние сопротивления движению на вынужденные колебания.			
Динамика механической системы Система материальных точек. Твердое тело. Дифференциальные уравнения движения механической системы. Центр масс. Моменты инерции твердого тела	2	2	2
Общие теоремы динамики Теорема о движении центра масс механической системы. Теоремы об изменении количества движения материальной точки и количества движения механической системы. Теоремы об изменении момента количества движения материальной точки и об изменении кинетического момента механической системы. Работа. Теорема об изменении кинетической энергии точки и твердого тела. Работа силы потенциального поля. Потенциальная энергия материальной точки и механической системы. Закон сохранения полной механической энергии	2	2	
Динамика твердого тела Дифференциальные уравнения поступательного движения твердого тела. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси. Теорема о зависимости между кинетическими моментами механической системы относительно неподвижного центра и относительно центра масс системы. Дифференциальные уравнения плоского движения твердого тела. Кинетические моменты твердого тела относительно неподвижной точки и координатных осей при его сферическом движении. Динамические уравнения Эйлера.	2	2	
Итого в 1 семестре	32	32	8

Раздел 2 Сопротивление материалов				
Основные положения, гипотезы и допущения механики материалов Задачи сопротивления материалов. Свойства материалов. Гипотезы и допущения. Геометрическая схематизация. Схематизация нагрузок. Схематизация связей. Деформации и перемещения. Метод сечений. Понятие о напряжениях. Опытное изучение свойств материалов Диаграммы растяжения и сжатия. Характеристики прочности и пластичности. Упрочнение, ползучесть и релаксация. Влияние температуры на свойства материалов. Неоднородность материалов. Коэффициент запаса прочности и допускаемые напряжения. Условие прочности и типы задач.	2	2		2
Растяжение и сжатие Определение продольной силы. Определение нормальных напряжений. Закон Гука. Определение деформаций и перемещений. Коэффициент поперечной деформации. Определение напряжений и деформаций при осевом растяжении и сжатии стержня Построение эпюр продольных сил, нормальных напряжений, деформаций и перемещений поперечных сечений	2	2		2
ступенчатых стержней при растяжении и сжатии. Плоское и объемное напряженное состояние	2			2
Напряжения в наклонных сечениях при одноосном растяжении и сжатии. Закон парности касательных напряжений. Напряжения в наклонных сечениях при растяжении и сжатии в двух направлениях. Главные напряжения и главные площадки. Обобщенный закон Гука. Работа внешних сил и потенциальная энергия деформации.				
Тест №1 «Проектный расчет при осевом растяжении и сжатии стерж-		1		2

ня» Определение поперечного сечения стержня из условия прочности при растяжении и сжатии. Построение эпюр продольных сил, нормальных напряжений, деформаций и перемещений поперечных сечений. Статически неопределимые системы Статически неопределимые задачи при растяжении и сжатии. Условия совместности деформаций. Температурные и монтажные напряжения. Концентрация напряжений.	2		2
Определение напряжений и деформаций в статически неопределимых системах Расчет статически неопределимых стержней при растяжении и сжатии. Определение реакций связей. Построение эпюр продольных сил, нормальных напряжений, деформаций и перемещений поперечных сечений. Определение напряжений и деформаций стержня при нагреве.		1	2
Сдвиг Напряженно-деформированное состояние при чистом сдвиге. Потенциальная энергия при сдвиге. Зависимость между упругими модулями. Практические методы расчета на сдвиг (срез) заклепочных и сварных соединений.	2		2
Практические расчеты на сдвиг и смятие Расчет заклепочных соединений на срез и смятие. Расчет лобовых и фланговых сварных швов на прочность.		2*	2
Геометрические характеристики по- перечных сечений Статический момент инерции. Коор- динаты центра тяжести. Моменты инерции сечения. Моменты инерции сложных фигур. Изменение моментов инерции при параллельном переносе и повороте системы координат. Мо- менты инерции простых сечений. Главные оси инерции и главные мо- менты инерции.	2		2

Определение геометрических характеристик составного сечения Определение центра тяжести и главных центральных моментов инерции плоской фигуры		2	2
Кручение стержня круглого сечения Построение эпюр крутящих моментов. Определение напряжений в стержнях круглого сечения. Деформации и перемещения при кручении валов. Потенциальная энергия деформации.	1		2
Тест №2 «Определение геометрических характеристик составного сечения» Определение центра тяжести и главных центральных моментов инерции плоской фигуры.		1	2
Определение напряжений в стержнях круглого сечения Построение эпюр внутренних крутящих моментов, максимальных касательных напряжений и угловых перемещений поперечных сечений.		1	2
Кручение стержня с некруглым по- перечным сечением Депланация Мембранная (пленочная) и гидродинамическая аналогия. Кручение тонкостенного стержня. Рациональ- ные формы сечений при кручении.	1		2
Определение внутренних силовых факторов при прямом изгибе Виды изгиба. Внутренние усилия при изгибе и правило знаков. Зависимость между изгибающим моментом, поперечной силой интенсивностью распределенной нагрузки.	1		2
Внутренние силовые факторы при прямом изгибе балки Построение эпюр поперечных сил и изгибающих моментов при плоском изгибе балки		1	2
Определение напряжений при прямом изгибе Нормальные напряжения. Условие прочности по нормальным напряжениям. Касательные напряжения. Глав-	1		2

ные напряжения. Потенциальная энергия деформации.			
Определение нормальных, касательных и главных напряжений при прямом изгибе балки Определение поперечного сечения балки из условий прочности по нормальным, касательным и главным напряжениям.		2*	2
Определение перемещений при прямом изгибе балки Определение прогибов и углов поворота поперечного сечения балки при плоском изгибе методом начальных параметров		1	2
Итого во 2 семестре	16	16	40
Раздел 2 Ст	роительн	ая механика	
Кинематический анализ сооружения Опоры, условия геометрической неизменяемости, условия статической определимости геометрически неизменяемых стержневых систем	1	2*	3
Однопролетные балки Общие сведения, линии влияния (ЛВ) опорных реакций, ЛВ изгибающих моментов и поперечных сил, ЛВ при узловой нагрузке, определение усилий с помощью ЛВ	1	4*	3
Многопролетные балки Определение усилий от неподвижной нагрузки, ЛВ усилий для многопролетных статически определимых балок, определение усилий в балках с ломанными осями от неподвижной нагрузки, построение ЛВ в балках кинематическим методом	2	4*	3
Плоские фермы Понятие о ферме, классификация ферм, определение усилий в стержнях простейших и сложных ферм, распределение усилий в элементах ферм, исследование неизменяемости ферм, ЛВ усилий в стержнях ферм, шпренгельные системы	2	4*	3
Трехшарнирные арки	2	4*	3

Итого	63	78	75
Итого в 3 семестре	15	30	27
Расчет статически неопределимых систем методом перемещений Выбор неизвестных в методе перемещений, определение числа неизвестных, основная система, канонические уравнения, статический способ определения коэффициентов и свободных членов системы канонических уравнений, определение коэффициентов и свободных членов перемножением эпюр, построение ЛВ методом перемещений	2	4	4
Расчет статически неопределимых систем методом сил Статическая неопределимость, канонические уравнения метода сил, расчет статически неопределимых систем (СНС) на действие заданной нагрузки, на действие температур, определение перемещений в СНС, ЛВ простейших СНС, использование симметрии, симметричные и обратносимметричные нагрузки	2	4	4
Определение перемещений в упругих системах Работа внешних сил, потенциальная энергия, теоремы о взаимности работ и взаимности перемещений, интеграл Мора, правило Верещагина	2	4	4
Понятие об арке, аналитический расчет трехшарнирной арки, уравнение рациональной оси трехшарнирной арки, расчет трехшарнирных арок на подвижную нагрузку, ЛВ усилий для трехшарнирной арки			

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое	распределение ча	асов на самостоятельну	ло работу
1 dolling a 1 chomeny choc	распределение на	icob ila camocionicibily	io paodi y

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	30
Подготовка к занятиям семинарского типа	30
Подготовка и оформление контрольной работы	15
Итого	75

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1 Бать, М.И. Теоретическая механика в примерах и задачах / М.И. Бать, Г.Ю. Джанелидзе., А.С.:Кельзон Москва : Наука, 1991.
- 2 Бутенин, Н.В. Курс теоретической механики / Н.В. Бутенин, Я.Л Лунц, Д.Р. Меркин. Москва : Наука, 1985.
- 3 Варданян, Г. С. Сопротивление материалов с основами строительной механики : учебник для вузов / Г. С. Варданян, Н. М. Атаров, А. А. Горшков; под ред. Г.С.Варданяна. Изд. испр. М.: ИНФРА-М, 2012; 2011. 504 с.
- 4 Дарков, А. В. Сопротивление материалов / А. В. Дарков, Г. С. Шпиро. 4-е изд., перераб. М.: Высшая школа, 1989; 1975; 1969. 654с.
- 5 Дарков, А.В. Строительная механика: Учебник для вузов / А. В. Дарков, Н. Н. Шапошников. 9-е изд., испр. СПб.: Лань, 2004. 655с.
- 6 Дарков, А.В. Строительная механика: Учебник для строительных спец.вузов / А. В. Дарков, Н. Н. Шапошников. 8-е изд., перераб. и доп. М.: Высшая школа, 1986. 607с
- 7 Долинский, Ф. В. Краткий курс сопротивления материалов : учебное пособие для вузов / Ф. В. Долинский. М.: Высшая школа, 1988. 432c.
- 8 Сборник заданий для курсовых работ по теоретической механике. А.А. Яблонский, С.С. Норейко и др. М: Интеграл, 1998.
- 9 Степин, П. А. Сопротивление материалов: Учеб. Для немашиностроит. спец. вузов. -8-е изд. Москва: Высшая школа, 1988. 367 с.: ил.
- 10 Феодосьев, В. И. Сопротивление материалов : учебник для втузов / В. И. Феодосьев. -9-е изд., перераб. М.: Наука, 1986. 512c.

8.2 Дополнительная литература

1. Бабанов, В.В. Строительная механика: Учебник для вузов: в 2 т. Т.2 / В. В. Бабанов. - М.: Академия, 2011. - 286с. Ахметзянов, М.Х. Сопротивление материалов: учебник для вузов / М. Х. Ахметзянов, И. Б. Лазарев. - 2-е изд., перераб. и доп. - М.:

- Юрайт, 2011. 300с.
- 2. Бабанов, В.В. Строительная механика: Учебник для вузов: в 2 т. Т.1 / В. В. Бабанов. М.: Академия, 2011. 304сИцкович, Г.М. Сборник задач по сопротивлению материалов: учебное пособие / Г. М. Ицкович, А. И. Винокуров, Н. В. Барановский. 4-е изд. Л.: Судостроение, 1972. 230с.
- 3. Смирнов, В.А. Строительная механика: Учебник для бакалавров / В. А. Смирнов, А. С. Городецкий; Под ред. В.А.Смирнова. 2-е изд., перераб. и доп. М.: Юрайт, 2013. 423с. (Бакалавр. Базовый курс).
- 4. Васильков, Г.В. Строительная механика. Динамика и устойчивость сооружений: Учебное пособие для вузов / Г. В. Васильков, З. В. Буйко. СПб.: Лань, 2013. 254с.
- 5. Шеин, А.И. Краткий курс строительной механики: Учебник для вузов / А. И. Шеин. М.: Бастет, 2011. 271с.
- 6. Тарг, С.М. Кратский курс теоретической механики : учебник для тех. вузов / С.М.Тарг. Москва : Высшая школа, 1998 416с.
- 7. Кирсанов, М. Н. Теоретическая механика. Сборник задач [Электронный ресурс] : учебное пособие / М. Н. Кирсанов. М.: НИЦ ИНФРА-М, 2015. 430с. // ZNANIUM.COM : электронно-библиотечная система. Режим доступа: http://www.znanium.com/catalog.php, ограниченный. Загл. С экрана.
- 8. Кирсанов, М.Н. Решебник. Теоретическая механика [Электронный ресурс] / М.Н. Кирсанов; под ред. А. И. Кирилова. 2-е изд., исправ. М.: ФИЗМАТЛИТ, 2008. 384с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://www.znanium.com/catalog.php, ограниченный. Загл. с экрана.
- 9 Александров, А. В. Сопротивление материалов : учебник для вузов / А. В. Александров, В. Д. Потапов, Б. П. Державин. 2-е изд., испр. М.: Высшая школа, 2000. 560c.
- 10 Ахметзянов, М. Х. Сопротивление материалов: учебник для вузов / М. Х. Ахметзянов, И. Б. Лазарев. 2-е изд., перераб. и доп. М.: Юрайт, 2011. 300с.
- 11 Ицкович, Г. М. Руководство к решению задач по сопротивлению материалов : учебное пособие для вузов / Г. М. Ицкович, Л. С. Минин, А. И. Винокур; Под ред. Л.С.Минина. 3-е изд., перераб. и доп. М.: Высшая школа, 2001; 1999. 592с.
- 12 Ицкович, Γ . М. Сборник задач по сопротивлению материалов : учебное пособие / Γ . М. Ицкович, А. И. Винокуров, Н. В. Барановский. 4-е изд. Л.: Судостроение, 1972. 230с.
- 13 Зиомковский, В. М. Прикладная механика: учеб. пособие для вузов / В. М. Зиомковский, И. В. Троицкий; под науч. ред. В. И. Вешкурцева. Москва: Издательство Юрайт, 2021. 286 с. // Юрайт: электронно-библиотечная система. URL: https://urait.ru/bcode/472199.
- 14 Королев, П. В. Механика, прикладная механика, техническая механика : учеб. пособие / П. В. Королев. Саратов : Ай Пи Ар Медиа, 2020. 279 с. // IPRbooks : электронно-библиотечная система. URL: https://www.iprbookshop.ru/87388.html.
- 15 Прикладная механика : учеб. пособие / В. Т. Батиенков, В. А. Волосухин, С. И. Евтушенко [и др.]. 2-е изд., доп. и перераб. Москва : РИОР : ИНФРА-М, 2019. 339 с. // Znanium.com : электронно-библиотечная система. URL: https://znanium.com/catalog/product/1021436
- 16 Справочник по сопротивлению материалов / Писаренко Г. С, Яковлев А. П., Матвеев В. В.; Отв. ред. Писаренко Г. С.— 2-е изд., перераб. и доп.— Киев: Наук, думка, 1988.— 736 с.

8.3 Методические указания для студентов по освоению дисциплины

- 1 Петров, М.Р. Элементы теории и примеры решения задач по теоретической механике: учеб. пособие. В 2 ч., ч.1 /М.Р. Петров, Г.А. Щербатюк, Ю.Б. Колошенко. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2011. 64с.
- 2 Усольцев, Ю.Я. Статика. Основные системы сил: методические указания для студентов всех специальностей, всех форм обучения, изучающих теоретическую механику / Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2009. 16 с.
- 3 Усольцев, Ю.Я. Кинематика: справочные сведения для студентов всех специальностей и форм обучения, изучающих теоретическую механику / Ю.Я. Усольцев. Комсомольск-на-Амуре: ГОУ ВПО «КнАГТУ», 2008. 11 с.
- 4 Лейзерович, Г. С. Руководство к самостоятельной работе по сопротивлению материалов // Г. С Лейзерович, В.С. Симонов // Комсомольск-на-Амуре: Изд-во Комсомольского-на-Амуре гос. техн. ун-та, 2007. 88с.
- 5 Лейзерович, Г. С. Методические указания по курсу «Сопротивление материалов» / Г. С Лейзерович, С. В. Макаренко. / Комсомольск-на-Амуре: Изд-во Комсомольского-на-Амуре гос. техн. ун-та, 2003.
 - 4 Усольцев, Ю.Я. Кинематика сложного движения
- 6 М.Р. Петров Г.А Щербатюк Курс лекций по строительной механике/ Комсомольск на Амуре, ФГБОУ ВПО КнАГТУ, 2018
- 7 Г.С Лейзерович, В.С. Симонов. Методические указания к самостоятельной работе по строительной механике/ Комсомольск на Амуре, ФГБОУ ВПО КнАГТУ, 2003

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1 Электронно-библиотечная система ZNANIUM.COM Договор № 4997 эбс ИКЗ 21 1 2727000769 270301001 0010 004 6311 244 от 13 апреля 2021 г. (с 17 апреля 2021 г. по 16 апреля 2022 г.).
- 2 Электронно-библиотечная система IPRbooks Лицензионный договор № ЕП 44/4 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 21 1 2727000769 270301001 0010 003 6311 244 от 05 февраля 2021 г. (с 27 марта 2021 г. по 27 марта 2022 г.).
- 3 Образовательная платформа "Юрайт". Договор № ЕП44/2 на оказание услуг по предоставлению доступа к образовательной платформе ИКЗ 21 1 2727000769 270301001 0010001 6311 244 от 02 февраля 2021 г. (с 07 февраля 2021 г. по 07 февраля 2022 г.).
- 4 Научная электронная библиотека eLIBRARY.RU. Договор № ЕП 44/3 на оказание услуг доступа к электронным изданиям ИКЗ 211 272 7000769 270 301 001 0010 002 6311 244 от 04 февраля 2021 г. (с 04 февраля 2021 г. по 04 февраля 2030 г.).
- 5 Справочная правовая система Консультант Плюс. Договор № 45 от 17 мая 2017 (бессрочный).

8.5 Перечень ресурсов информационно-телекоммуникационной сети "Интернет», необходимых для освоения дисциплины (модуля)

1 prlib.ru : Президентская библиотека им. Б.Н. Ельцина : сайт. – Санкт-Петербург, 2009 – . – URL: https://www.prlib.ru/ (дата обращения: 17.04.2021). – Режим доступа: открытый доступ.

- 2 rusneb.ru: Национальная электронная библиотека (НЭБ): сайт. Москва, 2012 . URL: https://rusneb.ru/ (дата обращения: 17.04.2021). Режим доступа: открытый доступ.
- 3 КиберЛенинка: научная электронная библиотека: . Москва, 2012 –. URL: https://cyberleninka.ru/ (дата обращения: 17.04.2021). Режим доступа: открытый доступ.

8.6 Лицензионное программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Tuesting a compared to the members by	Chief Chip of pulliminer of court former
Наименование ПО	Реквизиты / условия использования
Open Office	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html
T-flex CAD 17 учебная вер-	Бесплатная версия, условия использования по ссылке
сия	http://www.tflexcad.ru/download/t-flex-cad-free/
Mathcad Education	Договор № 106-АЭ120 от 27.11.2012

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 – Перечень учебного и лабораторного оборудования

таолица о ттер	e tellb y lection on side	ораторного осорудования
Аудитория	Наименование аудитории (лабо- ратории)	Используемое оборудование
Ауд. 227 /3	Лекционная ауди- тория ФАМТ	Мультимедийное оборудование
Ауд. 225 /3	Компьютерный класс кафедры АС	Мультимедийное оборудование, ПЭВМ

10.2 Технические и электронные средства обучения

Лекционные занятия

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (проектор, экран, компьютер).

Для реализации дисциплины подготовлены презентации по всем темам лекций и практических занятий

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Строительная механика»

Направление подготовки	08.03.01 Строительство
Направленность (профиль) образовательной программы	Производственно-технологическое обеспечение строительства
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
1, 2	1, 2, 3	7

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачёт (2), Экзамен	Кафедра «Строительство и архитектура»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достиже- ния	Планируемые результаты обуче- ния по дисциплине			
Общепрофессиональные					
ОПК-1 Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата	ОПК-1.1 Знает фундаментальные законы природы, основные физические и математические законы	Знать: — основные понятия и аксиомы механики, случаи приведения действующей на тело системы сил к простейшему виду, условия уравновешенности произвольной системы сил, методы нахождения реакций связей в покоящейся системе твердых тел, способы нахождения их центров тяжести; законы трения скольжения и качения; — кинематические характеристики движения точки при различных способах задания движения; характеристики движения тела и его отдельных точек при поступательном, вращательном и плоском движении — дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат; общие теоремы динамики, основные понятия и принципы аналитической механики (принцип Даламбера, принцип возможных перемещений) — механические свойства и характеристики материалов, методики их определения; расчетные формулы напряжений и деформаций для различных видов деформирования и случаев нагружения элементов конструкций и машин (условия прочности, жесткости и устойчивости). — классы математических методов, используемых в задачах строительной механики; знать методику проведения кинематического анализа конструкции и определения мгновенной изменяемости системы; методику определения внут-			

	ренних усилий и построения линий влияния многопролетной шарнирно-консольной балки и шарнирно-стержневой системы.
ОПК-1.2 Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера	Уметь: — Составлять уравнения равновесия для тела, находящегося под действием произвольной системы сил; — вычислять скорости и ускорения точек тел и самих тел, совершающих поступательное, вращательное и плоское движения; - решать прямую и обратную задачи динамики точки вычислять кинетическую энергию много массовой системы, работу сил, приложенных к твердому телу при указанных движениях - определять внутренние силовые факторы при различных видах деформирования элементов конструкций и выполнять построение их эпюр; производить расчеты на прочность, жесткость и устойчивость типовых элементов конструкций и деталей машин. - выбирать подходящий метод; формулировать гипотезы и ограничения, определяющие применимость методов строительной механики; ориентироваться в выборе расчетной конструкции, обладающей геометрической и мгновенной неизменяемости.
ОПК-1.3 Владеет навыками применения знаний физики и математики при решении практических задач	Владеть: - Навыками решения задач по кинематике точки и твердого тела — навыками исследования равновесия твердого тела (системы тел) под действием плоской и пространственной систем сил; - владеть навыками составления и решения дифференциальных уравнений движения точки, основами методов механики - практическими навыками выполнения расчетов типовых эле-

ментов конструкций и деталей машин по критериям прочности, жесткости и устойчивости; навыками обоснованного выбора материалов и поперечных сечений элементов конструкций и деталей машин по критериям прочности, жесткости и устойчивости, пользуясь справочной литературой и стандартами. - навыками определения и анализа расчетной схемы и определения ее степени статической и кинематической определимости; методами

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые раз- делы (темы) дисци- плины	Формируемая компетенция	Наименование оце- ночного средства	Показатели оценки
Теоретическая меха- ника	ОПК-1	Конспекты лекций, практические работы	Наличие конспекта лекции по теме дисциплины Наличие решенного задания по теме практической работы
Сопротивление мате- риалов	ОПК-1	Конспекты лекций, практические работы, тесты	Наличие конспекта лекции по теме дисциплины Наличие решенного задания по теме практической работы Выполнение задания теста
		Конспекты лекций, практические работы, ИКРР (Задача 1, 2,3) Экзамен	Наличие конспекта лекции по теме дисциплины Наличие решенного задания по теме практической работы

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование	Сроки вы-	Шкала оце-	Критерии оценивания
оценочного сред- ства	полнения	нивания	
	Промежуточна	1 семестр я аттестация і	в форме «Зачет»
Практические задания (практические работы, задания, выполняемые в рабочей тетради, тесты)	В течение семестра	50 баллов	50 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 40 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 30 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
Наличие опорного конспекта по темам, знания наизусть определений и теорем	В течение семестра	50 баллов	50 баллов - Наличие полного ком- плекта конспектов лекций и тем для самостоятельного изучения, сту- дент показал отличные знания в рамках усвоенного учебного мате- риала. 40 баллов - Наличие полного ком-

			плекта конспектов лекций и тем для самостоятельного изучения, студент показал знания теоретического материала с небольшими неточностями в формулировках и рассуждениях 30 баллов - Наличие комплекта конспектов лекций и тем для самостоятельного изучения по большинству тем, Показал удовлетворительные знания в рамках усвоенного учебного материала.
П	Іромежуточная	1 семестр я аттестация	в форме «Зачет»
Практические задания (практические работы, задания, выполняемые в рабочей тетради, тесты)	В течение семестра	50 баллов	50 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 40 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 30 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
Наличие опорного конспекта по темам, знания наизусть определений и теорем	В течение семестра	30 баллов	50 баллов - Наличие полного ком- плекта конспектов лекций и тем для самостоятельного изучения, сту- дент показал отличные знания в рамках усвоенного учебного мате- риала. 40 баллов - Наличие полного ком- плекта конспектов лекций и тем для

			самостоятельного изучения, студент показал знания теоретического материала с небольшими неточностями в формулировках и рассуждениях 30 баллов - Наличие комплекта конспектов лекций и тем для самостоятельного изучения по большинству тем, Показал удовлетворительные знания в рамках усвоенного учебного материала.
Тесты 1,2	В течение семестра	2×10 баллов	10 баллов — студент правильно вы- полнил задание теста, показал от- личные умения и навыки в рамках усвоенного учебного материала. 8 балла — студент выполнил задание теста с незначительными недоче- тами, показал хорошие умения и навыки в рамках усвоенного учебного материала. 5 балла — студент выполнил задание теста не полностью либо с суще- ственными недочетами, показал удовлетворительные умения и навы- ки в рамках усвоенного учебного ма- териала. 0 баллов — студент не выполнил за- дание теста либо выполнил неверно.

Критерии оценки результатов обучения по дисциплине: Пороговый (минимальный) уровень для аттестации в форме зачета — 75 % от максимально возможной суммы баллов

Наименование оценочного сред- ства	Сроки вы- полнения	Шкала оце- нивания	Критерии оценивания
П	ромежуточная	3 семестр п аттестация в	форме «Экзамен»
РГР (задача 1)	4 неделя	10 баллов	10 баллов - Студент полностью вы- полнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью вы- полнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог

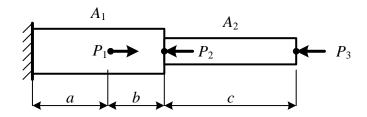
			обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
РГР (задача 2)	8 неделя	10 баллов	10 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
РГР (задача 3)	12 неделя	10 баллов	10 баллов - Студент полностью вы- полнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 8 баллов - Студент полностью вы-

			полнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
Практические задания (практические работы, задания, выполняемые в рабочей тетради, тесты)	В течение семестра	20 баллов	50 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 40 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 30 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
Наличие опорного конспекта по темам, знания наизусть определений и теорем	В течение семестра	20 баллов	50 баллов - Наличие полного ком- плекта конспектов лекций и тем для самостоятельного изучения, сту- дент показал отличные знания в рамках усвоенного учебного мате-

			риала. 40 баллов - Наличие полного ком- плекта конспектов лекций и тем для самостоятельного изучения, сту- дент показал знания теоретическо- го материала с небольшими неточ- ностями в формулировках и рас- суждениях 30 баллов - Наличие комплекта кон- спектов лекций и тем для самосто- ятельного изучения по большинству тем, Показал удовлетворительные знания в рамках усвоенного учебного материала.
Итого текущий контроль		70 баллов	
Экзамен:	-	30 баллов	30 баллов - Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. 25 баллов - Студент полностью выполнил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 15 баллов - Студент полностью выполнил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.
итого:		100 баллов	

Критерии оценки результатов обучения по дисциплине:

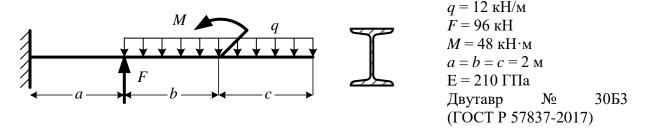
 $0-64\ \%$ от максимально возможной суммы баллов — «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);


 $65-74\ \%$ от максимально возможной суммы баллов — «удовлетворительно» (пороговый (минимальный) уровень);

- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)
 - 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости Тесты

Тест №1


«Проектный расчет при осевом растяжении и сжатии стержня» (типовой вариант)

Ступенчатый стержень с площадями поперечных сечений участков A_1 и A_2 нагружен осевыми силами F_1 , F_2 , F_3 . Материал стержня – сталь, модуль упругости E=200 ГПа, предел текучести σ_T = 240 МПа, нормативный коэффициент запаса прочности [n] = 1,5. Длины участков a = 0,5 м, b = 0,4 м, c = 0,6 м.

- 1. Изобразите в определенном масштабе расчетную схему, укажите размеры и величины нагрузок в числах.
- 2. Определите из условия прочности площади поперечных сечений A_1 , A_2 (ответ округлите в большую сторону до целого числа мм²).
- 3. Постройте эпюры продольных сил, нормальных напряжений и перемещений поперечных сечений.

Тест №2 «Определение перемещений при прямом изгибе балки» (типовой вариант)

Дана расчетная схема консольной балки двутаврового сечения. Определите прогибы и углы поворота поперечного сечения в середине балки и на свободном конце.

Индивидуальная контрольная работа

Задача № 1

Тема задачи: «Расчёт многопролётных статически определимых балок».

Задача №2

Тема задачи: «Расчёт трёхшарнирных арок»

Задача № 3

Тема задачи: «Расчёт статически неопределимых рам методом сил».

3.2 Задания для промежуточной аттестации

Контрольные вопросы к экзамену

Общие принципы расчёта статически определимых стержневых систем

- 1. Необходимый и достаточный признаки статической определимости плоских стержневых систем.
- 2. Общий принцип определения реакций опорных связей и в шарнирах сложных (составных) статически определимых стержневых систем.
- 3. Рациональные формы записи уравнений равновесия при определении реакций опорных связей в простых и составных плоских стержневых системах.
 - 4. В чём состоит суть метода сечений?
 - 5. Правила знаков для продольных сил, поперечных сил и изгибающих моментов.
- 6. Как используются дифференциальные зависимости и при построении и контроле эпюр внутренних усилий в поперечных сечениях балок и рам?
- 7. Как можно построить эпюру поперечных сил на участке прямолинейного стержня, если известны изгибающие моменты на его концах и внешняя нагрузка?
- 8. Как используются интегральные зависимости и при построении и контроле эпюр внутренних усилий в прямолинейных стержнях?

Определение усилий от подвижной и временной нагрузок

- 1. Какая нагрузка называется подвижной?
- 2. Что называется грузовой линией?
- 3. Как формулируется задача при расчёте на подвижную нагрузку?
- 4. Что называется линией влияния (ЛВ)?
- 5. Что такое единичный груз (единичная сила)?
- 6. Какие методы применяют для построения ЛВ?
- 7. В чём отличие ЛВ от эпюр внутренних усилий?
- 8. В чём сущность статического метода построения ЛВ?
- 9. Приведите аналитические зависимости опорных реакций шарнирно опёртой балки от положения условного единичного груза.
 - 10. Что такое левая и правая ветви ЛВ внутренних усилий?
- 11. Каковы особенности ЛВ опорных реакций, позволяющие упростить их построение?
- 12. Каковы особенности относительного положения левой и правой ветвей ЛВ изгибающего момента и поперечной силы?
 - 13. Каковы размерности ординат ЛВ поперечной силы и изгибающего момента?
 - 14. В чём заключается сущность кинематического метода построения ЛВ усилий?
- 15. Приведите последовательность построения ЛВ (модели ЛВ) кинематическим методом.
- 16. Как по ЛВ определяются невыгодные положения подвижной сосредоточенной силы (одиночного груза)?

- 17. Что понимается под «загружением» ЛВ?
- 18. Как вычисляются усилия по ЛВ от сосредоточенных неподвижных сил?
- 19. Как вычисляются усилия по ЛВ от неподвижной равномерно распределённой нагрузки?
- 20. Как вычисляются усилия по ЛВ от неподвижной сосредоточенной пары сил (сосредоточенного момента)?
- 21. Как по ЛВ определяются невыгодные положения временных неподвижных нагрузок?

Расчёт многопролётных статически определимых балок

- 1. Что представляет собой многопролётная статически определимая балка?
- 2. Как определить необходимое количество шарниров в многопролётной балке из условия, чтобы она была статически определимой?
- 3. Как следует располагать шарниры, чтобы обеспечить кинематическую (геометрическую) неизменяемость?
- 4. Какие типы элементов различают в многопролётных статически определимых балках?
 - 5. Что такое поэтажная схема балки и для чего её используют?
- 6. Каков порядок расчёта многопролётной статически определимой балки на постоянную нагрузку?
- 7. Как проверяется правильность построения эпюр поперечных сил и изгибающих моментов по дифференциально-интегральным зависимостям между q, Q и M?
- 8. Какую эпюру изгибающих моментов многопролётной статически определимой балки принято считать рациональной?
- 9. Как, используя так называемую балочную эпюру изгибающих моментов, установить рациональное расположение шарниров в многопролётной статически определимой балке?
- 10. Какими методами можно строить ЛВ в многопролётной статически определимой балке?
- 11. Какой метод построения ЛВ в многопролётной статически определимой балке менее трудоёмок?

Расчёт трёхшарнирных арок

- 1. Какие стержневые системы называют арками?
- 2. Назовите основные элементы и геометрические параметры трёхшарнирной арки.
- 3. Какие уравнения равновесия используются для определения опорных реакций трёхшарнирной арки?
- 4. Что такое заменяющая балка и как она используется при расчёте трёхшарнирной арки?
- 5. Как определяется распор при действии вертикальной нагрузки и как он зависит от стрелы подъёма арки с пятами на одном уровне?
- 6. Какие внутренние усилия возникают в поперечных сечениях арки и как они определяются через балочные внутренние усилия?
- 7. Чем и как отличаются внутренние усилия в арке от внутренних усилий в балке того же пролёта?
 - 8. Чем отличается очертание эпюр внутренних усилий в арке от балочных эпюр?
 - 9. Какое очертание оси арки принято считать рациональным (оптимальным)?
- 10. Отличаются ли ЛВ вертикальных составляющих опорных реакций в трёхшарнирной арке от ЛВ балочных реакций?
 - 11. Как построить ЛВ распора трёхшарнирной арки?

- 12. Как построить ЛВ внутренних усилий в трёхшарнирной арке способом наложения «исправленных» («скорректированных») балочных ЛВ?
- 13. Как построить (или проверить) ЛВ внутренних усилий трёхшарнирной арки с помощью нулевых точек?
- 14. Какая теорема теоретической механики лежит в основе графического определения положений нулевых точек ЛВ?
- 15. Как графически найти положения нулевых точек ЛВ внутренних усилий трёх-шарнирной арки?
- 16. Сколько линейных участков содержат ЛВ внутренних усилий трёхшарнирной арки?
 - 17. Может ли ЛВ продольной силы трёхшарнирной арки быть двузначной?

Расчёт плоских ферм

- 1. Какие стержневые системы называют фермами?
- 2. Как называются основные элементы ферм?
- 3. Покажите, что при узловой нагрузке и шарнирном соединении стержней в стержнях фермы возникают только лишь продольные силы.
- 4. Почему ферма более экономична (по весу) по сравнению с балкой того же пролёта?
 - 5. Какие стержни фермы называют нулевыми?
 - 6. Какой метод положен в основу способов определения усилий в стержнях ферм?
 - 7. В чём достоинства и недостатки способа вырезания узлов?
 - 8. В чём достоинства и недостатки способа простых (сквозных) сечений?
- 9. При каком способе определения усилий в стержнях ферм и когда используются моментные точки и уравнения равновесия сумма моментов относительно этих точек?
- 10. При каком способе определения усилий в стержнях ферм и когда используются уравнения равновесия сумма проекций (на какие оси)?
 - 11. Как зависят усилия в раскосах от угла их наклона?
 - 12. Как зависят усилия в стержнях верхнего и нижнего поясов от высоты фермы?
- 13. Какие элементы простых ферм различным образом работают при загружении узлов верхнего или нижнего поясов?
- 14. Различаются ли ЛВ опорных реакций балочной фермы и опорных реакций балки того же пролёта?
 - 15. Какие три части выделяют на ЛВ усилий в стержнях простых ферм?
- 16. Как направлены по отношению друг к другу левая и правая ветви (прямые) ЛВ усилий, определяемых способом простых сечений?
- 17. Чем отличаются ЛВ усилий в стержнях ферм, различным образом работающих при загружении узлов верхнего или нижнего поясов (при «езде по верху» и «езде по низу»)?
 - 18. Какие фермы называют шпренгельными? Что такое шпренгель?
 - 19. Какие типы стержней выделяют в шпренгельных фермах?
- 20. В чём суть методики определения усилий в стержнях шпренгельных ферм, основанной на выделении основной фермы и шпренгелей?

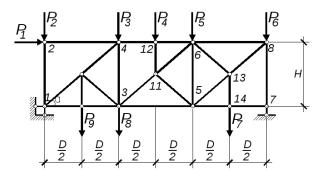
Определение перемещений в стержневых системах

- 1. Какие составляющие перемещений определяют положение поперечного сечения плоской стержневой системы в деформированном состоянии?
- 2. Как принято в строительной механике обозначать перемещения от внешней нагрузки и от условных единичных сил или моментов?

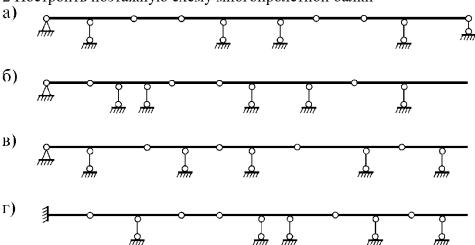
- 3. Сформулируйте общее правило определения линейного или углового перемещения с помощью интеграла Мора.
- 4. Почему при определении перемещений в балках и рамах в интегралах Мора учитывают, как правило, только лишь изгибающие моменты?
 - 5. В чём суть правила Верещагина?
- 6. Для каких стержневых систем (по очертанию элементов) применимо правило Верещагина при определении перемещений?
 - 7. Что понимается под «перемножением» эпюр?
 - 8. Как «подготовить» эпюры для их «перемножения» по правилу Верещагина?
- 9. В каких случаях при «перемножении» эпюр можно менять местами грузовую и единичную эпюры?
 - 10. Как «перемножаются» эпюры по готовым формулам?
 - 11. Как найти линейное перемещение?
 - 12. Как найти угловое перемещение?

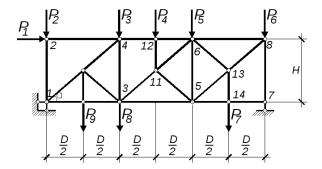
Расчёт статически неопределимых стержневых систем методом сил

- 1. По какому признаку определяется статическая неопределимость и степень статической неопределимости?
 - 2. Что принято считать неизвестными в методе сил?
 - 3. Что представляет собой основная система (ОС) метода сил?
 - 4. Какие требования предъявляются к ОС метода сил?
 - 5. Какие связи могут быть приняты в качестве «лишних»?
 - 6. Приведите возможные способы устранения «лишних» связей.
 - 7. Какой физический смысл имеют канонические уравнения метода сил?
- 8. Что представляют собой коэффициенты и свободные (грузовые) члены канонических уравнений метода сил?
- 9. Каковы свойства главных и побочных коэффициентов канонических уравнений метода сил?
- 10. Какой метод положен в основу определения (вычисления) коэффициентов и свободных членов канонических уравнений?
- 11. Как проверить правильность вычисления коэффициентов и свободных членов канонических уравнений?
- 12. Как находят усилия (строят эпюры внутренних усилий) после определения «лишних» неизвестных?
- 13. Как определяются перемещения в статически неопределимых стержневых системах?
- 14. Как проверяется правильность раскрытия статической неопределимости методом сил?
 - 15. Что даёт учёт симметрии при выборе симметричной основной системы?

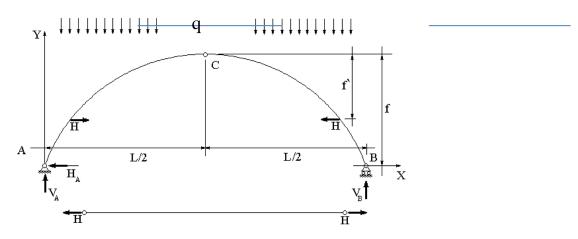

Расчёт статически неопределимых стержневых систем методом перемещений

- 1. Какие допущения применяются при расчёте стержневых систем методом перемещений?
 - 2. Что принимается за неизвестные в методе перемещений?
 - 3. Как определяется степень кинематической неопределимости?
 - 4. Как образуется ОС метода перемещений?
- 5. В чём особенность «плавающей» заделки, вводимой в основную систему метода перемещений?


- 6. На какие элементы расчленяется стержневая система (рама, балка) в основной системе метода перемещений?
 - 7. Какой физический смысл имеют канонические уравнения метода перемещений?
- 8. Что представляют собой коэффициенты и свободные (грузовые) члены канонических уравнений метода перемещений?
- 9. Каковы свойства главных и побочных коэффициентов канонических уравнений метода перемещений?
- 10. В чём суть статического способа определения коэффициентов и свободных членов канонических уравнений метода перемещений?
- 11. Как учитываются сосредоточенные силы и моменты, приложенные в узлах стержневой системы?
- 12. Как проверить правильность вычисления коэффициентов и свободных членов канонических уравнений?
- 13. Как строят грузовую и единичные эпюры изгибающих моментов в ОС метода перемещений (для рам и балок)?
- 14. Как строят эпюры внутренних усилий в статически неопределимой стержневой системе после раскрытия её кинематической неопределимости (после определения неизвестных перемещений)?
- 15. Как проверяется правильность раскрытия статической неопределимости методом перемещений?

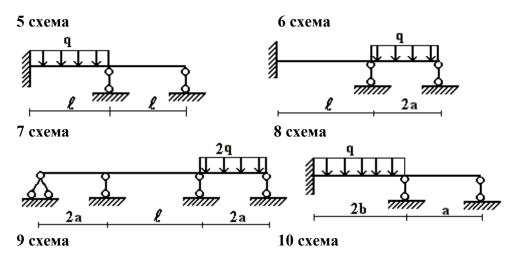

Типовые экзаменационные задачи

1 Определить степень свободы и мгновенную изменяемость конструкции



2 Построить поэтажную схему многопролетной балки


4 Определить реакции опор $V_A\,V_B\,H_A$ и усилие в стяжке арки H. q=100КH/м, L=24 м, f=8 м, f=4.5 м



5 Для статически неопределимой неразрезной балки), соответствующей варианту задания, с размерами и нагрузкой, выбранными по шифру из табл.1, раскрыть статическую неопределимость методом сил

	_			1
1 a	6	KIT	пa	- 1
1 4	v.	III	пa	- 1

Номер	Номер схемы	q,	a,	b,	l,
строки	по рис.11.1	кН/м	M	M	M
01	1	5	1	2	2
02	2	4	2	2	3
03	3	6	3	2	4
04	4	2	2	3	2
05	5	4	1	3	5
06	6	2	3	1	6

Лист регистрации изменений к РПД

	Номер протокола заседания кафедры, дата утверждения изменения	Количество страниц из- менения	Подпись разработчика РПД
1	. Воспитательная работа обучающихся. Основание: Федеральный закон от 31.07.2020 N 304-ФЗ "О внесении изменений в Федеральный закон "Об образовании в Российской Федерации" по вопросам воспитания обучающихся"	1	
2	. Практическая подготовка обучающихся. Основание: Приказ Министерства науки и высшего образования Российской Федерации, Министерства просвещения Российской Федерации от 05.08.2020 г. № 885/390 "О практической подготовке обучающихся"	1	